等几何多重网格法在雷诺方程中的应用The Application of Isogeometric Multiple Grid Method in Reynolds Equation
李子强;罗会信;左兵权;张希;
摘要(Abstract):
相比于有限元法,等几何法求解偏微分方程能以较少的自由度达到更高的求解精度。而多重网格法在处理大规模方程组求解方面应用广泛。为了满足流体仿真对雷诺方程求解的精度与速度的要求,对将等几何法与多重网格法相结合的方法求解雷诺方程进行了研究。文章首先对雷诺方程进行推导,建立适于等几何法的求解模型;然后研究了节点插入的细分算法,构建基于h细化的各层控制点网格之间与阶次相适应的映射矩阵,提出了基于h细化的等几何多重网格法求解模型并。通过不同计算实例发现:等几何多重网格法计算效率明显优于单纯等几何法。
关键词(KeyWords): 等几何法;雷诺方程;多重网格;映射矩阵;收敛速度
基金项目(Foundation):
作者(Author): 李子强;罗会信;左兵权;张希;
Email:
DOI: 10.19356/j.cnki.1001-3997.2021.03.019
参考文献(References):
- [1]周春良,刘顺隆.水润滑船舶艉管轴承内部流场数值分析[J].润滑与密封,2005(6):70-73.(Zhou Chun-liang,Liu Shun-long.Numerical simulation of ship propeller shaft bearing fluid field[J].Lubrication Engineering,2005(6):70-73.)
- [2]喻丽华,谢庆生,李少波.钻削电主轴空气静压径向轴承润滑参数优化[J].机械设计与制造,2014(8):124-126.(Yu Li-hua,Xie Qing-sheng,Li Shao-bo.Optimization on the aerostatic journal bearing lubrication parameters for drill electric spindle[J].Machinery Design&Manufacture,2014(8):124-126.)
- [3]魏思远,庞晓平,牛坤.具有通用膜厚方程径向轴承的动力学研究[J].机械设计,2014(7):59-64.(Wei Si-yuan,Pang Xiao-ping,Niu Kun.Study on hydrodynamic journal bearings based on general film thickness equation[J].Journal of Machine Design,2014(7):59-64.)
- [4]Wannatong K,Chanchaona S,Sanitjai S.Simulation algorithm for piston ring dynamics[J].Simulation Modelling Practice and Theory,2008,16(1):127-146.
- [5]Hughes T J R,Cottrell J A,Bazilevs Y.Isogeometric analysis:CAD,finite elements,NURBS,exact geometry and mesh refinement[J].Computer Methods in Applied Mechanics and Engineering,2005,194 (39):4135-4195.
- [6]刘素梅,刘惠梅.一种简化雷诺方程的数值求解方法[J].中北大学学报:自然科学版,2006(2):165-167.(Liu Su-mei,Liu Hui-mei.A numerical method for simplifying Reynolds equation[J].Publishing Center of North University of China:Natural Science Edition,2006(2):165-167.)
- [7]Patir N,Cheng H S.An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J].Journal of Lubrication Technology,1978,100(1):12-17.
- [8]Patir N,Cheng H S.Application of Average Flow Model to Lubrication between Rough Sliding Surfaces[M].ASME,Lubrication Division,1978.
- [9]陈德祥,窦柏通,徐自力.最小二乘等几何分析的多重网格方法[J].西安交通大学学报,2014,48(7):124-130.(Chen De-xiang,Dou Bai-tong,Xu Zi-li.Multigrid least squares isogeometric analysis[J].Journal of Xi’an Jiaotong University,2014,48(7):124-130.)
- [10]COHEN E,LYCHE T,RIESENFELD R.Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics[J].Computer Graphics and Image Processing,1980,14(2):87-111.
- [11]刘石,陈德祥,冯永新.等几何分析的多重网格共轭梯度法[J].应用数学和力学,2014,35(6):630-639.(Liu Shi,Chen De-xiang,Feng Yong-xin.Multiple grid conjugate gradient method for isogeometric analysis[J].Applied Mathematics and Mechanics,2014,35(6):630-639.)
- [12]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.(Shi Fa-zhong.Computer-Aided Geometry Design and Non-Uniform Rational B-Spline[M].Higher Education Press,2001.)