全矢EEMD在轴承故障诊断中的应用Application of Full Vector-Spectrum EEMD in Bearing Fault Diagnosis
高山;周玉平;陈宏;张旺;
摘要(Abstract):
实际工况中滚动轴承故障的振动信号为非线性,非平稳的信号。为了对滚动轴承的故障做出准确识别,根据轴承故障信号的特点,在此提出一种用全矢谱和EEMD相结合来提取故障特征指标,然后利用隐马尔科夫模型对滚动轴承故障进行分类的新方法。首先对实验得到的滚动轴承同源双通道振动信号进行EEMD分解,得到数个IMF分量,选取相关性较高的分量进行全矢融合。然后提取与故障类型相对应的故障特征频率下的幅值作为滚动轴承故障分类的指标,并利用HMM方法进行训练和识别,从而区分出不同的故障类型。最后,利用实验得到的轴承故障信号进行测试,实验结果表明,该方法可以对滚动轴承故障做出较为准确的识别。
关键词(KeyWords): 全矢谱;集合经验模态分解(EEMD);隐马尔科夫模型(HMM);滚动轴承;故障分类
基金项目(Foundation): 国家科学自然基金(NO 51405453)
作者(Author): 高山;周玉平;陈宏;张旺;
Email:
DOI: 10.19356/j.cnki.1001-3997.2021.03.026
参考文献(References):
- [1]贾艳秋,张兵,陈雪梅.滚动轴承的故障机理[J].化工装备技术,2011,32(4):55-57.(Jia Xue-mei,Zhang Bing,Chen Xue-mei.Fault mechanism and diagnosis of rolling bearing[J].Chemical Equipment Technology,2011(11):170-172.)
- [2]宋晓美,孟繁超,张玉.基于包络解调分析的滚动轴承故障诊断研究[J].仪器仪表与分析检测,2012(1):16-19(Song Xiao-mei,Meng Fan-chao,Zhang Yu.Fault diagnosis of rolling bearing based on envelope demodulation analysis[J].Instrumentation Analysis Monitoring,2012(1):16-19)
- [3]雷亚国,贾峰,孔德同.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(4):94-04(Lei Ya-guo,Jia Feng,Kong Lin-tong.Opportunity and challenge of mechanical intelligence fault diagnosis under big data[J].Journal of Mechanical Engineering,2018,54(4):94-04)
- [4]林静,贲少辉,刘美.基于小波神经网络的滚动轴承故障诊断方法研究[J].电子设计工程,2016,24(18):109-112.(Lin Jing,Bi Shao-hui,Liu Mei.Fault diagnosis method of rolling bearing based on wavelet neural network[J].Electronic Engineering Design,2016,24(18):109-112.)
- [5]李志农,刘卫兵,肖尧先.基于局域均值分解包络谱和SVM的滚动轴承故障诊断方法研究[J].机械设计与制造,2011(11):170-172.(Li Zhi-nong,Liu Wei-bing,Xiao Yao-xian.Fault diagnosis method of rolling bearing based on local mean decomposition envelope spectrum and SVM[J].Machinery Design&Manufacture,2011(11):170-172.)
- [6]韩捷,石来德.全矢谱技术及工程应用[M].北京:机械工业出版社,2008(9).(Han Jie,Shi Lai-de,etc al.Technology of Full Vector Spectrum and Engineering Application[M].Beijing:China Machine Press,2008(9).)
- [7]曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,28(9):33-38.(Cao Guo-feng,Yang Shi-xi,Yang Jiang-xin.EEMD noise reduction method for non-stationary vibration signal of large rotating machinery[J].Journal of Vibration and Shock,2009,28(9):33-38.)
- [8]欧阳贺龙,陈宏.基于全矢谱和Hilbert包络解调的滚动轴承故障诊断[J].机床与液压,2016,44(11):173-175.(O’yang He-long,Chen Hong.The fault diagnosis of bearing based on full vector spectrum and Hilbert envelope demodulation[J].Machine Tool and Hydraulics,2016,44(11):173-175.)
- [9]陶新民,徐晶等.基于小波域隐马尔科夫模型故障诊断方法[J].振动与冲击,2009,28(4):33-37.(Tao Xin-min,Xu Jing.Bearing fault diagnosis using a wavelet-doma in hidden markov model[J].Journal of Vibration and Shock,2009,28(4):33-37.)
- [10]杨国安.滚动轴承诊断实用技术[M].北京:中国石化出版社,2010(1).(Yang Guo-an.Practical Technology for Fault Diagnosis of Rolling Bearing[M].Beijing:China Petrochemical Press,2010(1).