机械设计与制造杂志社

2021, No.361(03) 234-237

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于特征降维和神经网络的电能表内异物声音自动识别
Automatic Recognition of Foreign Object Sound in the Electricity Meters Based on Feature Dimension Reduction and Neural Network

张进;吴健;欧习洋;欧熙;

摘要(Abstract):

电能表是国家强制检定的电能计量工具,其计量的精确性影响着千家万户的利益。传统的人工检测方式不仅效率低而且检测结果不稳定。随着声学检测技术的日趋成熟,采用声学检测的方式来检测电能表内的异物已成为实现工厂自动化的大势所趋。针对现有半自动的人工检测电能表异物方式,提出一种基于特征降维和神经网络的电能表内的异物声音自动识别方法。该方法充分利用声音的时、频域特征系数和倒谱系数,先对声音信号进行通道转换、预处理和数字降噪,再对声音信号进行时、频域和倒谱分析,并同时提取其短时特征系数及改进后MFCC系数。将声音特征通过PCA降维后输入基于Adaboost算法聚类后BP神经网络分类识别,并与传统的BP神经网络分类进行比较,证明了该方法的有效性。这里给出了电能表异物自动识别技术实现的具体步骤,并通过MATLAB仿真实验证明了该方法的有效性,BP神经网络的平均识别率较高,可达到95%以上,并且计算复杂度小易于实现。

关键词(KeyWords): 电能表异物检测;改进MFCC;PCA特征降维;Adaboost聚类;BP神经网络

Abstract:

Keywords:

基金项目(Foundation): 基于神经网络算法的电能表异物自动检测技术研究(2017渝电科技10#);; 电能表异物自动检测技术优化应用研究(FDRS05HT1707002MIG)

作者(Author): 张进;吴健;欧习洋;欧熙;

Email:

DOI: 10.19356/j.cnki.1001-3997.2021.03.053

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享