基于并行策略的改进混合粒子群算法及其应用Improved Hybrid Particle Swarm Optimization Algorithm Based on Parallel Strategy and Its Application
陆凤仪;于浩洋;徐格宁;
摘要(Abstract):
针对粒子群算法在解决高维度复杂优化易陷入局部最优的问题,构建差分进化算法(DE)、人工蜂群算法(ABC)与粒子群算法(PSO)并行运算的种群更新模型,提出基于并行策略的改进混合粒子群算法(DA_PSO)。以并行策略为基础,不改变种群规模,独立运行3种算法,每隔n次比较3种算法,获得当前最优点,并用其替换粒子群算法的种群最优点,利用PSO算法个体向种群最优靠近的特点,充分吸收DE算法、ABC算法的优点,使被替换后的PSO算法跳出局部最优,提升优化结果的质量。采用五种类型测试函数分别对ABC、DE、PSO和DA_PSO进行对比验证,结果表明:较其他算法而言,DA_PSO算法精度高,稳定性好,适应性强。同时为验证所提方法的科学性与实用性,将其应用在10t~32t/31.5m系列化的桥式起重机主梁金属结构轻量化设计中。
关键词(KeyWords): 并行策略;DA_PSO算法;人工蜂群算法;差分进化算法;主梁金属结构
基金项目(Foundation): 十三五"国家重点研发计划—港口等领域典型起重机械设计制造与服役过程风险防控关键技术研究(2017YFC0805703)
作者(Author): 陆凤仪;于浩洋;徐格宁;
Email:
DOI: 10.19356/j.cnki.1001-3997.2021.03.050
参考文献(References):
- [1]Taherkhani M,Safabakhsh R.A novel stability-based adaptive inertia weight for particle swarm optimization[J].Applied Soft Computing,2016(38):281-295.
- [2]George Anescua,Anatoli Paul Ulmeanu.A No Speeds and Coefficients approach to reliability optimization problems[J].Computers&Industrial Engineering,2018(120):31-41.
- [3]Chauhan P,Deep K,Pant M.Novel inertia weight strategies for particle swarm optimization[J].Memetic Computing,2013,5(3):229-251.
- [4]Chen Y,Li L,Xiao J.Particle swarm optimizer with crossover operation[J].Engineering Applications of Artificial Intelligence,2018(70):159-169.
- [5]Duong S C,Kinjo H,Uezato E.Particle swarm optimization with genetic recombination:a hybrid evolutionary algorithm[J].Artificial Life and Robotics,2010,15(4):444-449.
- [6]Javidrad F,Nazari M,Javidrad H R.Optimum stacking sequence design of laminates using a hybrid PSO-SA method[J].Composite Structures,2018(185):607-618.
- [7]Xia W,Wu Z.A hybrid particle swarm optimization approach for the job-shop scheduling problem[J].The International Journal of Advanced Manufacturing Technology,2006,29(3-4):360-366.
- [8]He Q,Wang L.A hybrid particle swarm optimization with a feasibilitybased rule for constrained optimization[J].Applied mathem atics and computation,2007,186(2):1407-1422.
- [9]李艳,向东,李啟文.起重机快速轻量化设计系统研究及应用[J].机械工程学报,2018(9).Li Yan,Xiang Dong,Li Qi-wen.Research and application of crane rapid light weight design system[J].Journal of Mechanical Engineering,2018(9).
- [10]张凯,王健,蒋惠波.基于改进果蝇算法的桥式起重机金属结构优化设计[J].起重运输机械,2014(8):41-44.(Zhang Kai,Wang Jian,Jian g Hui-bo.Optimization design of metal structure of bridge crane based on improved fruit fly algorithm[J].Hoisting and Conveying Machinery,2014(8):41-44.)
- [11]Kennedy J,Eberhart R C.Particle swarm optimization[C].Proceedings of the IEEE international conference on neural networks,Perth,Australia,1995(4):1942-1948.
- [12]吴慰春,陈龙,丁仁凯.基于粒子群算法的主动悬架混合控制策略研究[J].机械设计与制造,2018(1):29-31.(Wu Wei-chun,Chen Long,Ding Ren-kai.Study on active suspension hybrid control strategy based on particle swarm algorithm[J].Machinery Design&Manufacture,2018(1):29-31.)
- [13]Storn R,Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of global optimization,1997,11(4):341-359.
- [14]Guohua Wu,Xin Shen,Haifeng Li,Huangke Chen,Anping Lin,P.N.Suganthan.Ensemble of differential evolution variants[J].Information Sciences,2013(223):164-191.
- [15]Karaboga D.An idea based on honey bee swarm for numerical optimization[R].Technical report-tr06,Erciyes university,engineering faculty,computer engineering department,2005.
- [16]Jagdish Chand Bansal,Anshul Gopal,Atulya K.Nagar.Stability analysis of Artificial Bee Colony optimization algorithm[J].Swarm and Evolutionary Computation,2018:1-11.
- [17]杨丁,刘华森.基于中心引力算法的箱型梁面几何尺寸参数优化[J].机械设计与制造,2015(9):226-228.(Yang Ding,Liu Hua-sen.Geometric dimension parameter optimization of box beam surface based on central gravity algorithm[J].Machinery Design&Manufacture,2015(9):226-228.)